SENTIMENT ANALYSIS OF COFFEE SHOP REVIEWS USING RANDOM FOREST CLASSIFIER METHOD
DOI:
https://doi.org/10.61677/jth.v2i2.152Keywords:
Sentiment analysis, coffee shop, random forestAbstract
A Coffee shop is a place that serves drinks made from processed coffee grains, various drinks and various snacks to accompany coffee to consumers. Coffee shop reviews can help owners to find out how the community responds to the coffee shop and its services. The data used in this study was 2000 data taken on the old Google Maps Kopi Ampirono by sraping data using Instant Data Sraper. From the abundance of review data, it takes a long time to fully understand the polarity of positive, negative, and neutral reviews manually. Because of this, an accurate sentiment analysis model is needed to classify customer reviews into positive, negative, or neutral reviews. In this study, sentiment analysis used coffee shop reviews using the Random Forest Classifier method. The Preprocessing stage involves the process of case folding, tokenization, stopword removal and stemming. The results of this study are coffee shop reviews of the Random Forest Classifier method classification with an accuracy rate of 79% and a Precision value of 81%, Recall of 97% and while the F1 Score of 88%.
References
Amaliah, S., & Nusrang, M. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi Di Kedai Kopi Konijiwa Bantaeng. 4(2), 121–127. https://doi.org/10.35580/variansiunm31
Azhar, N., Adikara, P. P., Adinugroho, S., Studi, P., Informatika, T., Komputer, F. I., Brawijaya, U., & Korespondensi, P. (2021). SENTIMENT ANALYSIS FOR COFFEE SHOP REVIEWS USING NAÏVE BAYES. 8(3), 609–618. https://doi.org/10.25126/jtiik.202184436
Bano, N. J., Sukwadi, R., & Park, A. (2022). Analisis Perbaikan Kualitas Layanan Bluemoon Container Café: Model Integrasi Analisis Sentimen dan Quality Function Deployment. Jurnal INTECH Teknik Industri Universitas Serang Raya, 8(1), 75–82. https://doi.org/10.30656/intech.v8i1.4569
Elbagir, S., & Yang, J. (2019). Language Toolkit and VADER Sentiment. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), 0958, 12–16.
Habibi, M., & Cahyo, P. W. (2019). Clustering User Characteristics Based on the influence of Hashtags on the Instagram Platform. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(4), 399. https://doi.org/10.22146/ijccs.50574
Saputra, N., Nurbagja, K., & Turiyan, T. (2022). Sentiment Analysis of Presidential Candidates Anies Baswedan and Ganjar Pranowo Using Naïve Bayes Method. JURNAL SISFOTEK GLOBAL, 12(2), 114. https://doi.org/10.38101/sisfotek.v12i2.552
Wiraguna, A., Faraby, S. Al, & Adiwijaya. (2019). Klasifikasi Topik Multi Label pada Hadis Bukhari dalam Terjemahan Bahasa Indonesia Menggunakan Random Forest. E-Proceeding of Engineering, 6(1), 2144–2153. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/8507%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/download/8507/8377
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JTH: Journal of Technology and Health

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.