ANALYSIS OF PUBLIC SENTIMENT TOWARDS VILLAGE OFFICIALS IN DISTRIBUTION OF SOCIAL ASSISTANCE TO THE COMMUNITY

Authors

  • Indriani Diana Baga Teknik Informatika, Universitas Stella Maris Sumba
  • Gergorius Kopong Pati Teknik Informatika, Universitas Stella Maris Sumba
  • Lidia Lali Momo Teknik Informatika, Universitas Stella Maris Sumba

DOI:

https://doi.org/10.61677/jth.v2i2.90

Keywords:

Sentiment analysis, social assistance, village officials, natural language processing, public opinion

Abstract

The analysis of public sentiment toward village officials in the distribution of social assistance is essential to evaluate the level of public satisfaction and the effectiveness of social programs. This study aims to analyze community sentiment using Natural Language Processing (NLP) and sentiment classification techniques with the Naive Bayes algorithm. The dataset consists of public comments collected from social media, forums, and online surveys. The results show that most public sentiment is negative, dominated by issues of injustice, delays, and lack of transparency in the distribution process. Meanwhile, some comments reflect positive and neutral sentiments, indicating satisfaction or opportunities for service improvement. The classification model achieved an accuracy rate of 84%, proving its effectiveness in sentiment-based policy evaluation. These findings are expected to help village officials improve service quality by increasing transparency and public trust.

References

Astuti, R., Pratiwi, S. A., & Putri, N. K. (2024). Analisis sentimen pengaruh media sosial terhadap minat beli skincare pada remaja di Indonesia. Jurnal Teknologi dan Informasi, 8(3), 2957–2961. https://doi.org/10.31002/jti.v8i3.2957

Purnamasari, A. I., & Ali, I. (2024). Analisis sentimen komentar berita Detik.com menggunakan algoritma Support Vector Machine (SVM). Jurnal Teknologi dan Informasi, 8(3), 3175–3181. https://doi.org/10.31002/jti.v8i3.3175

Pustaka, T. (2024). Implementasi Long Short-Term Memory dalam analisis sentimen pengguna aplikasi Twitter yang mengandung ujaran kebencian. Jurnal Teknologi dan Informasi, 8(3), 3170–3174. https://doi.org/10.31002/jti.v8i3.3170

Trisnawati, W., & Wibowo, A. (2024). Sentiment analysis of ICT service user using Naive Bayes Classifier and SVM methods with TF-IDF text weighting. Jurnal Teknologi dan Informasi, 5(3), 709–719. https://doi.org/10.31002/jti.v5i3.709

Susanti, L. (2018). Metode penelitian kualitatif. Universitas Brawijaya. Diakses dari http://lilyasusanti.lecture.ub.ac.id/files/2018/03/MODUL-METODE-PENELITIAN.pdf

Ramadhansyah, D. T., Naufal, A. F., & Kingkinarti, K. (2024). Analisis sentimen ulasan penumpang maskapai penerbangan di Indonesia dengan algoritma. Jurnal Informatika dan Teknologi Informasi, 6(2), 287–297. https://doi.org/10.31002/jiti.v6i2.287

Published

2025-04-30

How to Cite

Indriani Diana Baga, Gergorius Kopong Pati, & Lidia Lali Momo. (2025). ANALYSIS OF PUBLIC SENTIMENT TOWARDS VILLAGE OFFICIALS IN DISTRIBUTION OF SOCIAL ASSISTANCE TO THE COMMUNITY. JTH: Journal of Technology and Health, 2(2), 71–78. https://doi.org/10.61677/jth.v2i2.90