ANALYSIS OF PUBLIC SENTIMENT TOWARDS VILLAGE OFFICIALS IN DISTRIBUTION OF SOCIAL ASSISTANCE TO THE COMMUNITY
DOI:
https://doi.org/10.61677/jth.v2i2.90Keywords:
Sentiment analysis, social assistance, village officials, natural language processing, public opinionAbstract
The analysis of public sentiment toward village officials in the distribution of social assistance is essential to evaluate the level of public satisfaction and the effectiveness of social programs. This study aims to analyze community sentiment using Natural Language Processing (NLP) and sentiment classification techniques with the Naive Bayes algorithm. The dataset consists of public comments collected from social media, forums, and online surveys. The results show that most public sentiment is negative, dominated by issues of injustice, delays, and lack of transparency in the distribution process. Meanwhile, some comments reflect positive and neutral sentiments, indicating satisfaction or opportunities for service improvement. The classification model achieved an accuracy rate of 84%, proving its effectiveness in sentiment-based policy evaluation. These findings are expected to help village officials improve service quality by increasing transparency and public trust.
References
Astuti, R., Pratiwi, S. A., & Putri, N. K. (2024). Analisis sentimen pengaruh media sosial terhadap minat beli skincare pada remaja di Indonesia. Jurnal Teknologi dan Informasi, 8(3), 2957–2961. https://doi.org/10.31002/jti.v8i3.2957
Purnamasari, A. I., & Ali, I. (2024). Analisis sentimen komentar berita Detik.com menggunakan algoritma Support Vector Machine (SVM). Jurnal Teknologi dan Informasi, 8(3), 3175–3181. https://doi.org/10.31002/jti.v8i3.3175
Pustaka, T. (2024). Implementasi Long Short-Term Memory dalam analisis sentimen pengguna aplikasi Twitter yang mengandung ujaran kebencian. Jurnal Teknologi dan Informasi, 8(3), 3170–3174. https://doi.org/10.31002/jti.v8i3.3170
Trisnawati, W., & Wibowo, A. (2024). Sentiment analysis of ICT service user using Naive Bayes Classifier and SVM methods with TF-IDF text weighting. Jurnal Teknologi dan Informasi, 5(3), 709–719. https://doi.org/10.31002/jti.v5i3.709
Susanti, L. (2018). Metode penelitian kualitatif. Universitas Brawijaya. Diakses dari http://lilyasusanti.lecture.ub.ac.id/files/2018/03/MODUL-METODE-PENELITIAN.pdf
Ramadhansyah, D. T., Naufal, A. F., & Kingkinarti, K. (2024). Analisis sentimen ulasan penumpang maskapai penerbangan di Indonesia dengan algoritma. Jurnal Informatika dan Teknologi Informasi, 6(2), 287–297. https://doi.org/10.31002/jiti.v6i2.287
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indriani Diana Baga, Gergorius Kopong Pati, Lidia Lali Momo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



